
CSCI 1951-W Sublinear Algorithms for Big Data Fall 2020

Lecture 15: Other Models in Distributional Testing and Learning

Lecturer: Jasper Lee Scribe: Danny Li

1 Instance Optimality

In property testing, and theoretical computer science in general, typical analyses of algo-
rithms give worst-case optimality. For example, consider the problem of identity testing
against a distribution q over [n] versus being ε-far from q. We formulate the upper bound
and lower bound of the algorithm as follows:

Upper bound ∀ distribution q over [n], identity testing takes only c1 · f(n, ε) samples,

where f(n, ε) =
√
n

!2
.

Lower bound ∃ distribution q over [n] such that identity testing takes at least c2 · f(n, ε)
samples, where f(n, ε) =

√
n

!2
as well.

As we can see, the analysis is implicitly identifying tester performance with its “worst-
case” performance over distributions q (i.e. identifying tester performance with a ∀ quan-
tifier). However, it is reasonable to ask for an algorithm that performs much better on
“easier” distributions than in the “worst case”. This is the notion of instance optimality,
which replaces the complexity measure f(n, ε) with f

′
(q, ε), which is a much stronger no-

tion of optimality since it is defined on the specific instance being tested. We next give an
example of one such result.

Definition 15.1 Given a distribution q over [n], define q−max
−! as a vector that removes 1

maximum element from q and also the elements with the smallest mass, stopping before
more than ε mass is removed.

With Definition 15.1 comes the instance optimal version of identity testing:

Theorem 15.2 (Valiant and Valiant, 2017) There exists a tester A, universal constants
c1, c2 such that for any ε > 0, known distribution q over [n], A tests identity to q (versus

ε-far from q) with probability ≥ 2
3 when run on c1 ·max

!
1
! ,

||q−max
−!/16

||2/3
!2

"
samples.

No tester can test identity to q (versus ε-far from q) with probability ≥ 2
3 when run on

fewer than c2 ·max

!
1
! ,

‖q−max
−! ‖2/3

!2

"
samples.

Note that the corresponding tester, though unstated here, is also an adaptation of the
χ2-test and is easy to implement (which is a feature, not a bug!).

1

2 Tolerant Testing

In standard property testing, we only consider the gap to be on one side: we look for a
tester such that given an object O (graph, or distribution, or otherwise), it tests

• O ∈ P, versus

• d(O,P) ≥ ε with an ε gap

However, in the framework of tolerant testing, we allow the gap to be 2-sided: we look for
a tester such that, given an object O, it tests

• d(O,P) ≤ ε1, versus

• d(O,P) ≥ ε2 with a gap of ε2 − ε1.

It is immediate that tolerant testing strictly generalises standard testing, since standard
testing is just tolerant testing with ε1 = 0. Are they really the same problem though, in
that is tolerant testing no harder than standard testing? The answer is (unfortunately) no.
It turns out that tolerant testing can be much harder than standard testing.

Recall that standard uniformity testing (requires Θ(
√
n

!2
) samples) is no harder than

identity testing, which is in turn no harder than closeness testing. The next theorem suggests
that even tolerant uniformity testing is hard, which implies hardness for the tolerant version
of the other two problems.

Theorem 15.3 (Tolerant uniformity testing is hard) There exists a universal constant
ε0 > 0 such that any tester with sample access to p distinguishing: 1) dTV(p,Unif[n]) ≤ ε0
versus 2) dTV(p,Unif[n]) ≥ 1

2 − ε0 with probability ≥ 2
3 requires at least Ω(n

logn) samples.

It turns out that n
logn is also the upper bound of tolerant closeness testing, so it is the

upper bound of tolerant identity testing and tolerant uniformity testing as well.

Theorem 15.4 (Tolerant closeness testing in O(n
logn) samples) There exists a tester A

such that with sample access to p, q over [n] and on input ε1 < ε2 ∈ (0, 1], A distinguishes
dTV(p,q) ≤ ε1 versus dTV(p,q) ≥ ε2 with probability ≥ 2

3 using O(1
(!2−!1)2

n
logn) samples

from both p, q.

Note that the 1
(!2−!1)2

dependence is not known to be optimal. It remains an open

question what the optimal dependence is.
Now that we have established tolerant testing as a much harder problem than standard

property testing, we want to understand why it is a much harder problem. One potential
indication is that we can reduce another problem to tolerant testing, namely, to use a
tolerant tester to solve a different problem.

It turns out that, up to polylogarithmic factors, tolerant testing is essentially equivalent
to the distance approximation problem, that is, to approximate the distance of an object
from a property. Given that in tolerant testing we can specify the gap we want to test
on both sides, it is reasonable to consider using a tolerant tester to estimate the distance
from a property The following two propositions establish the relationship between tolerant
testing and distance approximation.

Proposition 15.5 (Tolerant testing ⇒ Distance approximation) Suppose A is a tolerant
tester for property P, with sample/query complexity Q(ε2−ε1, n), then there is an algorithm
A′ that, using (log 1

!)(log log
1
!)Q(2ε, n) samples/queries, outputs a distance estimate d̂ ∈

[d(O,P)− ε, d(O,P) + ε] with probability ≥ 2
3 when A′ is given sample/query access to O.

2

The idea is relatively straightforward: just conduct a binary/ternary search for the
desired distance. This is where the log factor comes from. The log log factor comes from
additional technicalities regarding failure probabilities (needing to take a union bound at
some point).

On the other hand, we can also use a distance approximation algorithm for tolerant
testing.

Proposition 15.6 (Distance approximation⇒ Tolerant testing) Suppose A is an algorithm
approximating the distance to P to within additive error ±ε using sample/query complexity
Q(ε, n). Then there is a tolerant tester A′ for P, with complexity Q(!2−!1

100 , n).

This is even more straightforward than the previous direction, via a direct application
of the given algorithm A.

3 Robust Statistics

In standard statistics, we draw i.i.d. samples from some (unknown) distribution D. Typ-
ically, we make assumptions about D, such as it is over [n], or assuming D is Gaussian.
However, what if the above model is not quite true:

• Assumption on D only hold “approximately”?
e.g. We assume D is Gaussian, but D is only close to Gaussian.

• Data is corrupted adversarially?
e.g. The possibility of data poisoning attacks.

The area of robust statistics seeks to answer this question: How can we robustly perform
statistical tasks despite (small) deviations from the assumptions? To address this problem,
the first step is to come up with a suitable model. We do so with a general data contami-
nation model:

Consider a class D of distributions, encoding assumptions onD (e.g. D = the set of Gaussian
distributions).

1. Generate m samples from the unknown D ∈ D.

2. There is an adversary that changes an ε-fraction of samples arbitrarily/adversarially.

The second step is a little bit vague, and there are many variations in formalising this
model. For example:

• Can the adversary see samples before editing? (Adaptive versus Data oblivious)

• In terms of the edits made by the adversary, is it add only? Remove only? Can it do
both?

To gain some intuition, let us consider a very simple example. Consider D = Set of 1D
Gaussian Distributions. How can we robustly estimate its mean?

Answer: Take the median.

3

Fact 15.7 (Folklore) Given m samples from N (µ,σ2) that are “ε-corrupted” (as defined
above), with probability ≥ 99%, for µ̂ = sample median, we have

|µ̂− µ| ≤ σ ·O
#
ε+

$
1

m

%

Note that the ε term comes from the ε-corruption and the
&

1
m comes from the standard

(vanilla) mean estimation (for example, derivable using Chebyshev’s).
So what about learning both the mean and the variance?

Answer: Take the median, as well as some width (say the interquartile range) and scale it.

Fact 15.8 (Folklore) Given m “ε-corrupted” samples from N (µ,σ2). Let µ̂ = sample median,
σ̂ = appropriately scaled interquartile range, then with probability ≥ 99%,

dTV(N (µ,σ2),N (µ̂, σ̂2)) ≤ O

#
ε+

$
1

m

%

In higher dimensions, appropriate generalisations of median are still pretty robust, but
they turn out to be computationally expensive (e.g. the Tukey median is NP-hard to com-
pute). However, in recent years, significant progress has been made in finding efficient
algorithms for robust statistics in high-dimensions, including mean and covariance estima-
tion.

4 Sampling Corrector

The setting is similar to that of robust statistics: we start with the assumption that D is
close to having property P. The new task is to “correct” D into D′ ∈ P while keeping
dTV(D,D′) small.

Note that this is a relatively new notion, and not too much is known about it. A more
formal definition is as follows:

Definition 15.9 (Sampling Corrector) Given a property P and parameters ε0 < ε1 ∈ (0, 1]
and a natural number m, an m-sample (ε0, ε1)-sampling corrector A is such that, when
given sample access to a distribution D with dTV(D,P) ≤ ε0, with probability ≥ 1− δ over
the samples it draws from D and A’s internal randomness, it outputs m i.i.d. samples from
a distribution D̃ where

• D̃ ∈ P

• dTV(D, D̃) ≤ ε1

The average sample complexity of A is 1
m times the number of samples it draws from D.

One trivial approach to this problem is to use O(n
!2
) samples to learn D to within total

variation distance of O(ε) for ε = O(ε1− ε0). Find the closest D̃ ∈ P to the estimate D̂ (the
learned distribution) and then output samples from D̃ using internal randomness. Note
that in spite of the one-time cost of using O(n

!2
) samples, this algorithm needs no further

samples from D.
However, can we do better than this? We present one simple example below.

4

A simple example: The property we want is the independence of a pair of random
variables over [k]× [n], i.e. P = {(P1, P2) : P1 over [k] and P2 over [n]}.

One easy way to get an independent distribution from an arbitrary one is to take “the
product of its marginals”, and the following structural property comes in handy.

Fact 15.10 Suppose D (over [k] × [n]) is ε-close to independent, then “the product of its
marginals” (π1D,π2D) is 3ε-close to D.

Given this fact, the following proposition follows:

Proposition 15.11 There is an m-sample (ε, 3ε)-sampling corrector for independence that
succeeds with probability 1 and has average sample complexity 2.

Proof. From Fact 15.10, it suffices to generate samples from (π1D,π2D). To generate each
sample, we take 2 samples (x1, y1), (x2, y2) from D and combine them into (x1, y2).

It remains an open question whether we can do better than the average sample com-
plexity of 2.

5

